15	60	21-			6		D	ALIBRATION
_					2		Janua	ary 24, 201
nvir	onm	ent	al	-				
•	Ce	rtifa	cate of		Cal	ibri	ntion	
			Calibration (Certificatio	n Informat	ion		
Cal. Date:	January 24	2018	Rootsr	neter S/N:	438320	Tav	293	°K
Operator:	Jim Tisch	V1251			450520			1.2.92
		10.20 II 40.30 M				Pa:	756.9	mm Hg
Calibration	Model #:	TE-5025A	Calib	rator S/N:	3166			
		Vol. Init	Vol. Final	ΔVol.	ΔTime	40		1
	Run	(m3)	(m3)			ΔP	ΔH ('- 1120)	
	1	1	(113)	(m3) 1	(min) 1.4430	(mm Hg)	(in H2O)	-
	2	3	4	1	1.0270	3.2	2.00	-
	3	5	6	1	0.9220	7.9	5.00	· · ·
	4	7	8	1	0.8780	8.7	5.50	
	5	9	10	1	0.7270	12.6	8.00	
						12.0	0.00]
			D	ata Tabulat	ion			
	Vstd	Qstd	$\sqrt{\Delta H \left(\frac{Pa}{Pstd}\right)}$)(<u>Tstd</u>)		Qa	√∆н(та/Ра)	
	(m3)	(x-axis)	(y-axi	s)	Va	(x-axis)	(y-axis)	
	1.0087	0.6990	1.423	3	0.9958	0.6901	0.8799	
	1.0044	0.9780	2.012		0.9915	0.9655	1.2443	
	1.0024	1.0872	2.250		0.9896	1.0733	1.3912	
	1.0013	1.1404	2.360		0.9885	1.1259	1.4591	-
	0.9961	1.3701	2.846		0.9834	1.3526	1.7598	
	OCTO		2.122			m=	1.32895	
	QSTD	b=	-0.060		QA [b=	-0.03719	
		r=	0.9999	99		r=	0.99999	
				Calculation	s			1
	Vstd=	ΔVol((Pa-ΔP)	/Pstd)(Tstd/Ta)	Va=	ΔVol((Pa-ΔF	P)/Pa)	
	Qstd=	Vstd/∆Time			Qa=	Va/∆Time		
			For subseque	ent flow rat	e calculation	IS:		
	Qstd=	1/m ((\\ \ \ \ \ \ \ \ \ \ (Pa (Tstd) Pstd (Ta))-b)	Qa=	1/m ((√∆H	(Ta/Pa))-b)	
	Standard	Conditions						La la companya di seconda di s
Tstd:	298.15			Г		RECAL	IBRATION	
Pstd:		nm Hg		H				
		ey					nual recalibratio	
		er reading (in					egulations Part 5	
ΔP: rootsme	ter manome	ter reading (mm Hg)				Reference Meth	
	Southe temp	erature ("K)			Dotorminati	on of Surn	ended Particulate	Adattar in
Ta: actual ab Pa: actual ba			49)				re, 9.2.17, page 3	Contraction of the second s

Tisch Environmental, Inc. 145 South Miami Avenue

15	30	Cŀ		7)		D	ALIBRATION UE DATE: ary 11, 2020
vir	Ce	rtifa	a I			2002/02/2020	ation	
-	12 10 124		Contraction of the local division of the loc				0.97	
Cal. Date:	January 11,	2019	Rootsn	neter S/N:	438320		293	°К
Operator:	Jim Tisch					Pa:	760.7	mm Hg
Calibration	Model #:	TE-5025A	Calib	rator S/N:	0005			
		Vol. Init	Mat. Plant	avet	ATT	4.0		1
	Bun	10.000	Vol. Final	ΔVol.	∆Time (min)	ΔP	ΔH (i= μ2O)	
	Run	(m3)	(m3)	(m3)	(min) 1.4090	(mm Hg)	(in H2O)	
	1	1	2	1	the state of the s	3.2	2.00	1
	2	3	4	1	0.9980	6.4	4.00	1
	3	5	6	1	0.8900	7.8	5.00	1
	4	9	8	1	0.8450	8.7	5.50	4
	>	э	10	1	0.6990	12.6	8.00	
			D	ata Tabulat	tion			
	Vstd	Qstd	$\sqrt{\Delta H \left(\frac{Pa}{Pstd}\right)}$	Tstd)		Qa	√∆н(та/Ра)	
	(m3)	(x-axis)	(y-axis	5)	Va	(x-axis)	(y-axis)	
	1.0138	0.7195	1.426	9	0.9958	0.7067	0.8777	
	1.0095	1.0115	2.018	0	0.9916	0.9936	1.2412	
	1.0076	1.1321	2.256	1	0.9897	1.1121	1.3877	
	1,0064	1.1910	2.366	3	0.9886	1.1699	1.4555	
	1,0012	1.4323	2.853		0.9834	1.4059	1.7553	
		m=	1.998			m=	1.25149	
	QSTD	b=	-0.008		QA	b=	-0.00543	
		r=	0.999	97		r=	0.99997	
				Calculation	15			
			/Pstd)(Tstd/Ta) [∆Vol((Pa-∆i	P)/Pa)	
	Qstd=	√std/∆Time			Qa=	Va/∆Time		
			For subseque	ent flow rat	e calculation	ts:		
	Qstd=	1/т ((√Δн(-	$\frac{Pa}{Pstd}$ $\left(\frac{Tstd}{Ta}\right)$)-b)	Qa=	$1/m \left(\sqrt{\Delta F} \right)$	(Ta/Pa))-b)	
	Standard	Conditions						
Tstd:	and the second se			- E		RECA	LIBRATION	
Pstd:		mm Hg						1000
		еү					nnual recalibratio	
		er reading (in					Regulations Part !	The second s
		ter reading (mm Hg)				, Reference Meth	
and a second s	osolute temp	essure ("K)					ended Particulati re, 9.2.17, page 1	
las actual he								

ch Environmental, Inc.

Ľ

5 South Miami Avenue

lage of Cleves, OH 45002

www.tisch-env.com TOLL FREE: (877)263-7610 FAX: (513)467-9009

Calibration Data for High Volume Sampler (TSP Sampler)

Location	:	CMA1b	Calbration Date :	19-Dec-18
Equipment no.	:	HVS001	Calbration Due Date :	18-Feb-19

CALIBRATION OF CONTINUOUS FLOW RECORDER

Ambient Condition									
Temperature, T _a		29	293 Kelvin Pressure , P _a				1	020 mmHg	
Orifice Transfer Standard Information									
Equipment No.		Ori31	66	Slope, m _c	2.122	31	Intercept, bo	-0.06016	
Last Calibration Date		24-Jan	-18		(H x P	_a / 101:	3.3 x 298 /	T _a) ^{1/2}	
Next Calibration Date		24-Jan	-19		=	m _c x	Q _{std} + b _c		
Calibration of TSP									
Calibration	Manometer Reading			Q	std	Continuous Flow		IC	
Point	н	(inches c	of water)	(m ³ / min.)		Reco	order, W	W(P _a /1013.3x298/T _a) ^{1/2} /35.3 ¹	
	(up)	(down)	(difference)	X-axis		(CFM)		Y-axis	
1	1.6	1.6	3.2	0.88	312	26		26.3074	
2	2.7	2.7	5.4	1.1:	362	34		34.4020	
3	4.0	4.0	8.0	1.37	768	45		45.5321	
4	5.2	5.2	10.4	1.56	58	58 48		48.5676	
5	6.3	6.3	12.6	1.72	207		54	54.6385	
By Linear Regression of Y o	on X								
s	Slope, m	=	33.7	706	Inte	rcept, b =	-3.	2329	
Correlation Co	efficient*	=	0.99	933					
Calibration A	ccepted	=	Yes/	No**	-				

* if Correlation Coefficient < 0.990, check and recalibration again.

** Delete as appropriate.

Date

Remarks :			
Calibrated by	:	Henry Lau	Checked by
Dete	: -	19-Dec-18	Date

Chan Ka Chun : 19-Dec-18

:

Calibration Data for High Volume Sampler (TSP Sampler)

Location	:	CMA1b	Calbration Date	:	18-Feb-19
Equipment no.	:	HVS001	Calbration Due Date	:	20-Apr-19

CALIBRATION OF CONTINUOUS FLOW RECORDER

Ambient Condition									
Temperature, T _a		291		Kelvin	Pressure, P	а	1	015 mmHg	
Orifice Transfer Standard Information									
Equipment No.		Ori0005	1	Slope, m _c	1.998	61	Intercept, bc	-0.00882	
Last Calibration Date		11-Jan-1	9		(H x	P _a / 101	3.3 x 298 /	T _a) ^{1/2}	
Next Calibration Date		11-Jan-2	0		=	m _c x	Q _{std} + b _c		
Calibration of TSP									
Calibration	Manometer Reading			G) _{std}	Contin	uous Flow	IC	
Point	H (inches of water)		(m ³	/ min.)	Reco	order, W	(W(P _a /1013.3x298/T _a) ^{1/2} /35.31)		
	(up)	(down)	(difference)	X-	axis	(0	CFM)	Y-axis	
1	1.4	1.4	2.8	0.8	8524		22	22.2817	
2	2.4	2.4	4.8	1.1	1147		34	34.4354	
3	3.6	3.6	7.2	1.3	3642		42	42.5378	
4	4.6	4.6	9.2	1.5	5415		47	47.6018	
5	5.9	5.9	11.8	1.1	7452		54	54.6914	
By Linear Regression of	Y on X								
	Slope, m	=	35.4	579	Inte	ercept, b =	-6	.6215	
Correlation Co	pefficient*	=	0.99	958					
Calibration	Accepted	=	Yes/ł	\o **					

* if Correlation Coefficient < 0.990, check and recalibration again.

** Delete as appro	priate.					
Remarks :						
Calibrated by	:	Henry Lau		Checked by	:	Chan Ka Chun
Date	:	18-Feb-19	_	Date	:	18-Feb-19

Calibration Data for High Volume Sampler (TSP Sampler)

Location	:	CMA2a	Calbration Date	:	19-Dec-18
Equipment no.	:	HVS002	Calbration Due Date	: _	18-Feb-19

CALIBRATION OF CONTINUOUS FLOW RECORDER

Ambient Condition										
Temperature, T _a		29	93	Kelvin	Pressure, P _a 10			1020	mmHg	
Orifice Transfer Standard Information										
Equipment No.		Ori31	66	Slope, m _c	2.122	31	Intercept,	bc	-0.06016	
Last Calibration Date		24-Jan	-18		(H x F	⊃ _a / 10	13.3 x 298	/T _a)	1/2	
Next Calibration Date		24-Jan	-19		=	m _c	x Q _{std} + b	c		
Calibration of TSP										
Calibration	Manometer Reading			Q	Q _{std}		Continuous Flow		IC	
Point	н	(inches c	nches of water) (m ³ / min.)			Red	corder, W	(W(P _a /1	1013.3x298/T _a) ^{1/2} /35.31)	
	(up)	(down)	(difference)	X-axis			(CFM)		Y-axis	
1	1.5	1.5	3.0	0.8	541		28		28.3311	
2	2.2	2.2	4.4	1.0	284		32		32.3784	
3	3.7	3.7	7.4	1.3	253		40		40.4730	
4	4.5	4.5	9.0	1.4	586		44		44.5203	
5	6.0	6.0	12.0	1.6	799		52		52.6149	
By Linear Regression of Y o	on X									
5	Slope, m	=	29.0	948	Inte	rcept, b	=	2.7348		
Correlation Co	efficient*	=	0.99	963	_					
Calibration A	ccepted	=	Yes/I	\o **	_					

* if Correlation Coefficient < 0.990, check and recalibration again.

Remarks	:
---------	---

Calibrated by	:	Henry Lau	Checked by :	Chan Ka Chun
Date	:	19-Dec-18	Date :	19-Dec-18

Calibration Data for High Volume Sampler (TSP Sampler)

Location	:	CMA2a	Calbration Date	:	18-Feb-19
Equipment no.	:	HVS002	Calbration Due Date	:	20-Apr-19

CALIBRATION OF CONTINUOUS FLOW RECORDER

	Ambient Condition								
Temperature, T _a		291		Kelvin Pressure, P a			1	015 mmHg	
Orifice Transfer Standard Information									
Equipment No.		Ori0005	5	Slope, m _c	1.998	61	Intercept, bc	-0.00882	
Last Calibration Date		11-Jan-1	9		(H x	P _a / 10	13.3 x 298 /	T _a) ^{1/2}	
Next Calibration Date		$= m_c x Q_{std} + b_c$							
Calibration of TSP									
Calibration	Manometer Reading			c	Q _{std}	Conti	nuous Flow	IC	
Point	H (inches of water)		(m ³	/ min.)	Recorder, W		$(W(P_a/1013.3x298/T_a)^{1/2}/35.31)$		
	(up)	(down)	(difference)	X-	axis	tis (CFM)		Y-axis	
1	1.7	1.7	3.4	0.	9388		24	24.3073	
2	2.4	2.4	4.8	1.	1147		33	33.4225	
3	4.0	4.0	8.0	1.4	4377		42	42.5378	
4	5.1	5.1	10.2	1.	6229		50	50.6402	
5	6.2	6.2	12.4	1.	7889		58	58.7427	
By Linear Regression of	Y on X								
	Slope, m	=	38.5	348	Inte	ercept, b	= -11	.2706	
Correlation Coefficient* = 0.9			0.99	949					
Calibration	Accepted	=	Yes/I	\o **					

* if Correlation Coefficient < 0.990, check and recalibration again.

Remarks :					
Calibrated by	:	Henry Lau	Checked by	:	Chan Ka Chun
Date	:	18-Feb-19	Date	: _	18-Feb-19

Calibration Data for High Volume Sampler (TSP Sampler)

Location	:	CMA3a	Calbration Date	:	19-Dec-18
Equipment no.	: _	HVS012	Calbration Due Date	:	18-Feb-19

CALIBRATION OF CONTINUOUS FLOW RECORDER

	Ambient Condition									
Temperature, T _a			293	Kelvin	Pressure, F) _a		1020	mmHg	
Orifice Transfer Standard Information										
Equipment No.		Ori31	66	Slope, m _c	2.1223	31	Intercept, k	oc ·	-0.06016	
Last Calibration Date		24-Jan	า-18		(HxPa	/ 1013.	3 x 298 / 1	Γ _a) ^{1/2}		
Next Calibration Date		24-Jan	ו-19		=	m _c x	Q _{std} + b	с		
Calibration of TSP										
Calibration	Manometer Reading			Q _{std}		Continu	ious Flow		IC	
Point	H (inches of water)		(m ³ / min.) Rea		Reco	rder, W	(W(P _a /1013.3)	x298/T _a) ^{1/2} /35.31)		
	(up)	(down)	(difference)	X-axis	;	(C	FM)	Y-	axis	
1	1.2	1.2	2.4	0.7669)	:	20 2		.2365	
2	2.0	2.0	4.0	0.9819)	:	28	28	.3311	
3	3.5	3.5	7.0	1.2897	7	:	37	37.4375		
4	4.5	4.5	9.0	1.4586	3	,	41	41	.4848	
5	5.5	5.5	11.0	1.6096	3		50	50	.5912	
By Linear Regression of Y o	on X									
\$	Slope, m		33	3.7811	Inter	cept, b =		5.6420		
Correlation Co	efficient*	=	0).9918	_					
Calibration Accepted = Y		Ye	es/No**	-						
					-					

* if Correlation Coefficient < 0.990, check and recalibration again.

Remarks :					
Calibrated by	:	Henry Lau	Checked by	:	Chan Ka Chun
Date	: _	19-Dec-18	Date	:	19-Dec-18

Calibration Data for High Volume Sampler (TSP Sampler)

Location	:	CMA3a	Calbration Date	:	18-Feb-19
Equipment no.	:	HVS012	Calbration Due Date	:	20-Apr-19

CALIBRATION OF CONTINUOUS FLOW RECORDER

	Ambient Condition								
Temperature, T _a		291		Kelvin Pressure, P a			1	015 mmHg	
Orifice Transfer Standard Information									
Equipment No.		Ori0005		Slope, m _c	1.998	61	Intercept, bc	-0.00882	
Last Calibration Date		11-Jan-1	9		(H x	P _a / 10)13.3 x 298 /	T _a) ^{1/2}	
Next Calibration Date		$= m_c x Q_{std} + b_c$							
Calibration of TSP									
Calibration	Manometer Reading			c) _{std}	Conti	nuous Flow	IC	
Point	H (inches of water)		(m ³	/ min.)	Recorder, W		$(W(P_a/1013.3x298/T_a)^{1/2}/35.31)$		
	(up)	(down)	(difference)	Х-	X-axis (CF		(CFM)	Y-axis	
1	1.3	1.3	2.6	0.	8215		30	30.3841	
2	2.0	2.0	4.0	1.	0179		38	38.4866	
3	3.1	3.1	6.2	1.:	2662		44	44.5634	
4	4.0	4.0	8.0	1.	4377		49	49.6274	
5	5.0	5.0	10.0	1.	6069		54	54.6914	
By Linear Regression of	Y on X								
Slope, m = 29.9			29.9	992	Inte	ercept, b	=6.	6497	
Correlation Coefficient* = 0.9			0.99	964					
Calibration	Accepted	=	Yes/ł	\o **					

* if Correlation Coefficient < 0.990, check and recalibration again.

** Delete as appropriate.

Remarks :					
Calibrated by	:	Henry Lau	Checked b	by :	Chan Ka Chun
Date	:	18-Feb-19	Date	:	18-Feb-19

Calibration Data for High Volume Sampler (TSP Sampler)

Location	:	CMA4a	Calbration Date	:	19-Dec-18
Equipment no.	:	HVS004	Calbration Due Date	:	18-Feb-19

CALIBRATION OF CONTINUOUS FLOW RECORDER

	Ambient Condition									
Temperature, T _a		29	93	Kelvin	Pressure,	Pa		1020		
Orifice Transfer Standard Information										
Equipment No.		Ori31	66	Slope, m _c	2.122	31	Intercept,	bc	-0.06016	
Last Calibration Date		24-Jan	-18		(H x F	P _a / 101	3.3 x 298	/T _a)	1/2	
Next Calibration Date		24-Jan	-19		=	m _c >	k Q _{std} + b	С		
Calibration of TSP										
Calibration	Manometer Reading			Q	std	Continu	uous Flow		IC	
Point	н	(inches c	of water)	er) (m ³ / min.)		Reco	order, W	(W(P _a /10	13.3x298/T _a) ^{1/2} /35.31)	
	(up)	(down)	(difference)	X-a	xis	(0	CFM)		Y-axis	
1	1.5	1.5	3.0	0.8	541		24		24.2838	
2	2.0	2.0	4.0	0.98	319		31	31.366		
3	3.6	3.6	7.2	1.30)76		40		40.4730	
4	4.2	4.2	8.4	1.4	101		47		47.5558	
5	5.7	5.7	11.4	1.63	381		56		56.6622	
By Linear Regression of Y	′ on X									
s	Slope, m	=	39.8	624	Inte	rcept, b =	-	9.2955		
Correlation Coe	efficient*	=	0.99	932	_					
Calibration A	ccepted	=	Yes/I	\o **	_					

* if Correlation Coefficient < 0.990, check and recalibration again.

** Delete as appropriate.

Remarks : _____

Calibrated by	:	Henry Lau	Checked by	Chan Ka Chun
Date	:	19-Dec-18	Date :	19-Dec-18

Calibration Data for High Volume Sampler (TSP Sampler)

Location	:	CMA4a	Calbration Date	:	18-Feb-19
Equipment no.	:	HVS004	Calbration Due Date	:	20-Apr-19

CALIBRATION OF CONTINUOUS FLOW RECORDER

Ambient Condition										
Temperature, T _a		291		Kelvin	Pressure, P	a	1	015 mmHg		
Orifice Transfer Standard Information										
Equipment No.		Ori0005	i	Slope, m _c	1.998	61	Intercept, bc	-0.00882		
Last Calibration Date		11-Jan-1	9		(H x	P _a / 10	13.3 x 298 /	T _a) ^{1/2}		
Next Calibration Date		11-Jan-2	0		=	m _c >	κQ _{std} +b _c			
Calibration of TSP										
Calibration	Manometer Reading			G	l _{std}	Contir	nuous Flow	IC		
Point	H (inches of water)			(m ³	/ min.)	Rec	order, W	(W(P _a /1013.3x298/T _a) ^{1/2} /35.31		
	(up)	(down)	(difference)	X-	axis	(CFM)		Y-axis		
1	1.4	1.4	2.8	0.8	3524		22	22.2817		
2	2.2	2.2	4.4	1.0	0674		33	33.4225		
3	2.9	2.9	5.8	1.:	2248		40	40.5122		
4	4.1	4.1	8.2	1.4	4555		47	47.6018		
5	5.8	5.8	11.6	1.	7304		58	58.7427		
By Linear Regression of	Y on X									
	Slope, m	=	40.4	458	Inte	ercept, b	= -10	0.6963		
Correlation Coefficient* = 0.9			0.99	957						
Calibration Accepted = Yes				\0 **						

* if Correlation Coefficient < 0.990, check and recalibration again.

Remarks :					
Calibrated by	:	Henry Lau	Checked by	:	Chan Ka Chun
Date	:	18-Feb-19	Date	: _	18-Feb-19

Calibration Data for High Volume Sampler (TSP Sampler)

Location	:	CMA5b	Calbration Date	:	19-Dec-18
Equipment no.	:	HVS010	Calbration Due Date	:	18-Feb-19

CALIBRATION OF CONTINUOUS FLOW RECORDER

Ambient Condition										
Temperature, T _a		293	5	Kelvin	Pressure,	Pa		1020	mmHg	
Orifice Transfer Standard Information										
Equipment No.		Ori316	6	Slope, m _c	2.122	31	Intercept,	bc	-0.06016	
Last Calibration Date		24-Jan-1	8		(H x F	P _a / 101	3.3 x 298	/ T a)) 1/2	
Next Calibration Date		24-Jan-1	9		=	m _c :	x Q _{std} + b	с		
Calibration of TSP										
Calibration	Manometer Reading			Q,	std	Contin	ious Flow		IC	
Point	H (inches of water)			(m ³ /	min.) Recor		order, W	(W(P _a /	1013.3x298/T _a) ^{1/2} /35.31)	
	(up)	(down)	difference	X-a	xis	(0	CFM)		Y-axis	
1	1.5	1.5	3.0	0.85	541		25		25.2956	
2	2.8	2.8	5.6	1.15	566		34		34.4020	
3	3.6	3.6	7.2	1.30)76		38		38.4493	
4	4.8	4.8	9.6	1.50)55		46		46.5439	
5	6.0	6.0	12.0	1.67	799		54		54.6385	
By Linear Regression of Y	′ on X									
s	Slope, m	=	35	.1088	Inte	rcept, b =	-	5.8015		
Correlation Coefficient* = 0			0.	9935						
Calibration Accepted = Ye				s/ No **						

* if Correlation Coefficient < 0.990, check and recalibration again.

** Delete as appropriate.

Remarks : _____

Calibrated by	:	Henry Lau	Checked by	:	Chan Ka Chun
Date	:	19-Dec-18	Date	:	19-Dec-18

Calibration Data for High Volume Sampler (TSP Sampler)

Location	:	CMA5b	Calbration Date	:	18-Feb-19
Equipment no.	:	HVS010	Calbration Due Date	:	20-Apr-19

CALIBRATION OF CONTINUOUS FLOW RECORDER

Ambient Condition									
Temperature, T _a		291		Kelvin	Pressure, P	a	1	015 mmHg	
			Orifice Tr	ansfer Sta	andard Inform	mation			
Equipment No.		Ori0005		Slope, m _c	1.998	61	Intercept, bc	-0.00882	
Last Calibration Date		11-Jan-1	9		(H x	P _a / 10	13.3 x 298 /	T _a) ^{1/2}	
Next Calibration Date		11-Jan-2	0		=	m _c :	$x Q_{std} + b_{c}$		
Calibration of TSP									
Calibration	Manometer Reading			c) _{std}	Conti	nuous Flow	IC	
Point	H (inches of water)			(m ³	/ min.)	Recorder, W		$(W(P_a/1013.3x298/T_a)^{1/2}/35.31)$	
	(up)	(down)	(difference)	X-	axis		(CFM)	Y-axis	
1	1.2	1.2	2.4	0.	7895	37		37.4738	
2	2.0	2.0	4.0	1.	0179		42	42.5378	
3	3.1	3.1	6.2	1.:	2662		50	50.6402	
4	4.0	4.0	8.0	1.	4377		56	56.7171	
5	5.0	5.0	10.0	1.	6069		61	61.7811	
By Linear Regression of	Y on X								
	Slope, m = 30.4			544	Inte	ercept, b	= 12	.5644	
Correlation Coefficient* = 0.9			0.99	972					
Calibration Accepted = Yes/No**									

* if Correlation Coefficient < 0.990, check and recalibration again.

** Delete as appro	priate.				
Remarks :					
Calibrated by	:	Henry Lau	Checked by	:	Chan Ka Chun
Date	:	18-Feb-19	Date	:	18-Feb-19

Calibration Data for High Volume Sampler (TSP Sampler)

Location	:	CMA6a	Calbration Date	:	19-Dec-18
Equipment no.	:	HVS013	Calbration Due Date	:	18-Feb-19

CALIBRATION OF CONTINUOUS FLOW RECORDER

Ambient Condition										
Temperature, T _a		293	5	Kelvin	Pressure,	Pa		1020	mmHg	
Orifice Transfer Standard Information										
Equipment No.		Ori3166			2.122	31	Intercept,	bc	-0.06016	
Last Calibration Date		24-Jan-1	8		(H x I	P _a / 101	3.3 x 298	/ T a)) 1/2	
Next Calibration Date		24-Jan-1	9		=	m _c :	x Q _{std} + b	с		
Calibration of TSP										
Calibration	Manometer Reading			Q,	std	Continue			IC	
Point	H (inches of water)			(m ³ /	min.) Recor		order, W	(W(P _a /	1013.3x298/T _a) ^{1/2} /35.31)	
	(up)	(down)	difference	X-a	xis	(0	CFM)		Y-axis	
1	1.4	1.4	2.8	0.82	261		28		28.3311	
2	2.3	2.3	4.6	1.05	509		33		33.3902	
3	3.7	3.7	7.4	1.32	253		41		41.4848	
4	4.8	4.8	9.6	1.50)55		46		46.5439	
5	6.0	6.0	12.0	1.67	799		54		54.6385	
By Linear Regression of Y	′ on X									
s	Slope, m	=	30.	.1687	Inte	rcept, b =	. 1	2.3363		
Correlation Coefficient* = 0			0.9	9927						
Calibration Accepted = Ye				s/ No **						

* if Correlation Coefficient < 0.990, check and recalibration again.

** Delete as appropriate.

Remarks : _____

Calibrated by	:	Henry Lau	Checked by	:	Chan Ka Chun
Date	:	19-Dec-18	Date	:	19-Dec-18

Calibration Data for High Volume Sampler (TSP Sampler)

Location	:	CMA6a	Calbration Date	:	18-Feb-19
Equipment no.	:	HVS013	Calbration Due Date	:	20-Apr-19

CALIBRATION OF CONTINUOUS FLOW RECORDER

				Ambient (Condition			
Temperature, T _a		291		Kelvin	Pressure, P	a	1	015 mmHg
			Orifice Tr	ansfer Sta	andard Inform	mation		
Equipment No.		Ori0005	5	Slope, m _c	1.998	61	Intercept, bc	-0.00882
Last Calibration Date	11-Jan-19				(H x	P _a / 10)13.3 x 298 /	T _a) ^{1/2}
Next Calibration Date		$= m_c \times Q_{std} + b_c$						
Calibration of TSP								
Calibration	Mar	nometer R	eading	G	Q _{std}	Conti	nuous Flow	IC
Point	Н (і	inches of	water)	(m ³	/ min.)	Re	corder, W	(W(P _a /1013.3x298/T _a) ^{1/2} /35.31)
	(up)	(down)	(difference)	X-	axis		(CFM)	Y-axis
1	1.4	1.4	2.8	0.	8524		28	28.3585
2	2.1	2.1	4.2	1.	0430		37	37.4738
3	3.4	3.4	6.8	1.3	3259		45	45.5762
4	4.4	4.4	8.8	1.	5077		52	52.6658
5	5.5	5.5	11.0	1.	6851		59	59.7555
By Linear Regression of	Y on X							
	Slope, m	=	36.4	334	Inte	ercept, b	= -1	.9709
Correlation Co	pefficient*	=	0.99	972				
Calibration	Accepted	=	Yes/	\o **				

* if Correlation Coefficient < 0.990, check and recalibration again.

Remarks :					
Calibrated by	:	Henry Lau	Checked by	:	Chan Ka Chun
Date	:	18-Feb-19	Date	: _	18-Feb-19

综合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD. 香港美行就道 37號利達中心12樓

12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

Certificate No.:	18CA1114 02			Page	1	of	2
Item tested							
Description:	Sound Level Mete	r (Type 1)	20	Microphone			
Manufacturer:	B&K			B&K			
Type/Model No.:	2236		- 22	4188			
Serial/Equipment No.:	2100736		- 55	2288941			
Adaptors used:	-		- 18 - I	-			
Item submitted by			_				
Customer Name:	Lam Environment	al Service Ltd.					
Address of Customer:		15-50000000000					
Request No .:							
Date of receipt:	14-Nov-2018						
Date of test:	15-Nov-2018						
Reference equipment	used in the calib	ration					
Description:	Model:	Serial No.		Expiry Date:		Traceal	ble to:
Multi function sound calibrator	B&K 4228	2288444		23-Aug-2019		CIGISME	EC
Signal generator	DS 360	33873		24-Apr-2019		CEPREI	
Signal generator	DS 360	61227		23-Apr-2019		CEPREI	
Ambient conditions							
Temperature:	20 ± 1 °C						
Relative humidity:	50 ± 10 %						
Air pressure:	1000 ± 5 hPa						
Test specifications							
1, The Sound Level Met	ter has been calibrat	ed in accordance w	ith the	requirements as sp	ecifie	d in BS 7	580: Part 1
and the lab calibratio	n procedure SMTP00						
	Contraction and the strain of the second	The second se					

- The electrical tests were performed using an electrical signal substituted for the microphone which was removed and replaced by an equivalent capacitance within a tolerance of ±20%.
- The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference between the free-field and pressure responsess of the Sound Level Meter.

Test results

This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate.

Actual Measurement data are documented on worksheets.

Approved Signatory: Date: 15-Nov-2018 Company Chop:

© Soils & Materials Engineering Co., Ltd.

Form No.CARP152-18 num 1/Rev.C/01/02/2007

Hong Kong Accreditation Service (HKAS) has accredited this laboratory (Reg. No. HOKLAS 928) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific calibration activities as listed in the HOKLAS directory of accredited laboratories. The results shown in this certificate are traceable to the International System of Units (SI) or recognised measurement standards. This certificate shall not be reproduced except in full.

綜合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD.

香 憲 黄 竹 坑 道 3 7 號 利 嶠 中 心 1 2 樓 12F., Laader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

2

CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

18CA1114 02

Page

of

Electrical Tests 1.

The electrical tests were performed using an equivalent capacitance substituted for the microphone. The results are given in below with test status and the estimated uncertainties. The "Pass" means the result of the test is inside the tolerances stated in the test specifications. The "-" means the result of test is outside these tolerances.

Test:	Subtest:	Status:	Expanded Uncertanity (dB)	Coverage Factor
Self-generated noise	A	Pass	0.3	
	C	Pass	1.0	2.1
	Lin	Pass	2.0	2.2
Linearity range for Leg	At reference range , Step 5 dB at 4 kHz	Pass	0.3	
	Reference SPL on all other ranges	Pass	0.3	
	2 dB below upper limit of each range	Pass	0.3	
	2 dB above lower limit of each range	Pass	0.3	
Linearity range for SPL	At reference range , Step 5 dB at 4 kHz	Pass	0.3	
Frequency weightings	A	Pass	0.3	
	C	Pass	0.3	
	Lin	Pass	0.3	
Time weightings	Single Burst Fast	Pass	0.3	
15 BAD OF #1000#154	Single Burst Slow	Pass	0.3	
Peak response	Single 100µs rectangular pulse	Pass	0.3	
R.M.S. accuracy	Crest factor of 3	Pass	0.3	
Time weighting I	Single burst 5 ms at 2000 Hz	Pass	0.3	
Contraction and an end of the second	Repeated at frequency of 100 Hz	Pass.	0.3	
Time averaging	1 ms burst duty factor 1/10 ³ at 4kHz	Pass	0.3	
000 CAN DE 200 CAN DE 2	1 ms burst duty factor 1/10 ⁴ at 4kHz	Pass	0.3	
Pulse range	Single burst 10 ms at 4 kHz	Pass	0.4	
Sound exposure level	Single burst 10 ms at 4 kHz	Pass	0.4	
Overload indication	SPL	Pass	0.3	
50000000000000000000000000000000000000	Lea	Pass	0.4	

2, Acoustic tests

The complete sound level meter was calibrated on the reference range using a B&K 4226 acoustic calibrator with 1000Hz and SPL 94 dB. The sensitivity of the sound level meter was adjusted. The test result at 125 Hz and 8000 Hz are given in below with test status and the estimated uncertainties.

Test:	Subtest	Status	Expanded Uncertanity (dB)	Coverage Factor
Acoustic response	Weighting A at 125 Hz	Pass	0.3	
6648877.0003978787891495	Weighting A at 8000 Hz	Pass	0.5	

Response to associated sound calibrator 3.

N/A

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

	1	- End -	Amin	
Calibrated by:	~ 7	Checked by:	- 1-44	
Date:	Fung Chi Yip 15-Nov-2018	Date:	/Shek Kwong Tat 15-Nov-2018	

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

© Sote & Materials Engineering Co., UM

Form No CARP152-2/Issue 1/Rev C/01/02/2007

Hong Kong Accreditation Service (HKAS) has accredited this laboratory (Reg. No. HOKLAS 028) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific calibration activities as listed in the HOKLAS directory of accredited laboratories. The results shown in this certificate are traceable to the International System of Units (SI) or recognised measurement standards. This certificate shall not be reproduced except in full,

Calibration Certificate

Certificate Number 2018010851

Customer: LAM Environmental Services Ltd 11/F Centre Point 181-185 Gloucester Road Wanchai, , Hong Kong

Model Number	CAL20	0	Procedure Number	D0001	8385	
Serial Number	13098		Technician	Scott f	Montgo	mery
Test Results	Pass		Calibration Date	29 Oc	t 2018	
	Inopera	and a	Calibration Due			
Initial Condition	mopera	sole	Temperature	23	*C	± 0.3 °C
Description	Larson	Davis CAL200 Acoustic Calibrator	Humidity	34	%RH	± 3 %RH
			Static Pressure	101.2	kPa	±1 kPa
Evaluation Metho	od	The data is aquired by the insert volta circuit sensitivity. Data reported in dB	500 XM 200 CM 570	ne refere	nce mic	crophone's open
Compliance Stan	dards	Compliant to Manufacturer Specificat IEC 60942:2017	ions per D0001.8190 and the ANSI S1.40-2006	following	standa	ards:

Issuing lab certifies that the instrument described above meets or exceeds all specifications as stated in the referenced procedure (unless otherwise noted). It has been calibrated using measurement standards traceable to the SI through the National Institute of Standards and Technology (NIST), or other national measurement institutes, and meets the requirements of ISO/IEC 17025:2005. Test points marked with a \$ in the uncertainties column do not fall within this laboratory's scope of accreditation.

The quality system is registered to ISO 9001:2008.

This calibration is a direct comparison of the unit under test to the listed reference standards and did not involve any sampling plans to complete. No allowance has been made for the instability of the test device due to use, time, etc. Such allowances would be made by the customer as needed.

The uncertainties were computed in accordance with the ISO Guide to the Expression of Uncertainty in Measurement (GUM). A coverage factor of approximately 2 sigma (k=2) has been applied to the standard uncertainty to express the expanded uncertainty at approximately 95% confidence level.

This report may not be reproduced, except in full, unless permission for the publication of an approved abstract is obtained in writing from the organization issuing this report.

Standards Used	1	
Cal Date	Cal Due	Cal Standard
09/06/2018	09/06/2019	001021
04/10/2018	04/10/2019	001051
03/07/2018	03/07/2019	005446
09/20/2018	09/20/2019	006506
08/07/2018	08/07/2019	006507
05/10/2018	05/10/2019	006510
07/18/2018	07/18/2019	007368
	Cal Date 09/06/2018 04/10/2018 03/07/2018 09/20/2018 08/07/2018 05/10/2018	09/06/2018 09/06/2019 04/10/2018 04/10/2019 03/07/2018 03/07/2019 09/20/2018 09/20/2019 08/07/2018 08/07/2019 05/10/2018 05/10/2019

Larson Davis, a division of PCB Piczotronics, Inc 1681 West 820 North Provo, UT 84601, United States 716-684-0001

10/29/2018 1-43-01PM

綜合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD. 香 徳 黄 竹 坑 砲 3 7 號 利 達 中 心 1 2 樓 12F., Loader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong,

E-mail: smec@cigismec.com Website: www.cigismec.com Tel: (852) 2873 6860 Fax: (852) 2555 7533

24-Apr-2019

CERTIFICATE OF CALIBRATION

Certificate No.:	18CA1220 02		Page:	1 of 2
Item tested				
Description:	Acoustical Calib	ator (Class 1)		
Manufacturer:	Larson Davis	22410-0512-052-05		
Type/Model No.:	CAL200			
Serial/Equipment No.:	13128			
Adaptors used:	(0.259350) 55			
Item submitted by				
Curstomer:	Lam Environmer	tal Service Ltd.		
Address of Customer:				
Request No.:	ini Marananana			
Date of receipt:	20-Dec-2018			
Date of test:	28-Dec-2018			
Reference equipment	used in the cali	bration		
Description:	Model:	Serial No.	Expiry Date:	Traceable to:
Lab standard microphone	B&K 4180	2412857	20-Apr-2019	SCL
Preamplifier	B&K 2673	2239857	27-Apr-2019	CEPREI
Measuring amplifier	B&K 2610	2346941	08-May-2019	CEPREI
Signal generator	DS 360	33873	24-Apr-2019	CEPREI
Digital multi-meter	34401A	US36087050	23-Apr-2019	CEPREI
Audio analyzer	89038	GB41300350	23-Apr-2019	CEPREI

Ambient conditions

Universal counter

Temperature:	20 ± 1 °C
Relative humidity:	50 ± 10 %
Air pressure:	1000 ± 5 hPa

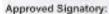
53132A

Test specifications

1. The Sound Calibrator has been calibrated in accordance with the requirements as specified in IEC 60942 1997 Annex B and the lab calibration procedure SMTP004-CA-156.

MY40003662

- 2. The calibrator was tested with its axis vertical facing downwards at the specific frequency using insert voltage technique.
- З, The results are rounded to the nearest 0.01 dB and 0.1 Hz and have not been corrected for variations from a reference. pressure of 1013.25 hectoPascals as the maker's information indicates that the instrument is insensitive to pressure changes.


Test results

This is to certify that the sound calibrator conforms to the requirements of annex B of IEC 60942, 1997 for the conditions under which the test was performed. This does not imply that the sound calibrator meets IEC 60942 under any other conditions.

Details of the performed measurements are presented on page 2 of this certificate.

al

Fend

Jungi

29-Dec-2018 Company Chop:

Comments: The results reported in this certificate refer to the conditon of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

Date:

© Soits & Material's Engineering Coll Ltd.

Farm No. CARP106-54ssue 1/Rev. Dt01/03/2007

CEPREI

Hong Kong Accreditation Service (HKAS) has accredited this laboratory (Reg. No. HOKLAS 028) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific calibration activities as listed in the HOKLAS directory of accredited laboratories. The results shown in this certificate are traceable to the International System of Units (SI) or recognised measurement standards. This certificate shall not be reproduced except in full.

綜合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD.

香 進 黄 竹 坑 道 3 7 號 利 達 中 心 1 2 樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

18CA1220 02

2 Page:

Measured Sound Pressure Level 1.

The output Sound Pressure Level in the calibrator head was measured at the setting and frequency shown using a calibrated laboratory standard microphone and insert voltage technique. The results are given in below with the estimated uncertainties.

Frequency	Output Sound Pressure	Measured Output	Estimated Expanded
Shown	Level Setting	Sound Pressure Level	Uncertainty
Hz	dB	d8	dB
1000	94.00	93.84	0.10

2, Sound Pressure Level Stability - Short Term Fluctuations

The Short Term Fluctuations was determined by measuring the maximum and minimum of the fast weighted DC output of the B&K 2610 measuring amplifier over a 20 second time interval as required in the standard. The Short Term Fluctuation was found to be:

At 1000 Hz	STF = 0.006 dB

Estimated expanded uncertainty

3, Actual Output Frequency

The determination of actual output frequency was made using a B&K 4180 microphone together with a B&K 2673 preamplifier connected to a B&K 2610 measuring amplifier. The AC output of the B&K 2610 was taken to an universal counter which was used to determine the frequency averaged over 20 second of operation as required by the standard. The actual output frequency at 1 KHz was:

0.005 dB

At 1000 Hz	Actual Frequency = 999.4 Hz		
Estimated expanded uncertainty	0.1 Hz	Coverage factor k = 2:2	

4, **Total Noise and Distortion**

For the Total Noise and Distortion measurement, the unfiltered AC output of the B&K 2610 measuring amplifier was connected to an Agilent Type 8903 B distortion analyser. The TND result at 1 KHz was

At 1000 Hz	TND = 0.4%
Estimated expanded uncertainty	0.7 %

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

	Λ	- End -	1
Calibrated by:	$1 - \chi$	Checked by:	Aque
Date:	28-Dec-2018	Date:	Shek Kwong Tat 29-Dec-2018

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

ID Solis & Materials Engineering Co., Ltd.

Form No.CARP198-24soue 1/Rev.CI01/05/2005

Hong Kong Accreditation Service (HKAS) has accredited this laboratory (Reg. No. HOKLAS 028) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific calibration activities as listed in the HOKLAS directory of accredited laboratories. The results shown in this certificate are traceable to the International System of Units (SI) or recognised measurement standards. This certificate shall not be reproduced except in full.

Page 1/2

REPORT OF EQUIPMENT PERFORMANCE CHECK / CALIBRATION

Information suppli	ed by customer:	
CONTACT:	MR. SAM LAM	WORK ORDER: HK1811070
CLIENT:	LAM GEOTECHNICS I	IMITED
DATE RECEIVED	: 24/10/2018	
DATE OF ISSUE:	25/10/2018	
ADDRESS:	11/F, CENTRE POINT, 1	81-185, GLOUCESTER ROAD,
	WANCHAI, HONG KO?	NG
PROJECT:		

METHOD OF PERFORMANCE CHECK/ CALIBRATION: Ref: APHA22nd ed 2130B

COMMENTS

It is certified that the item under performance check/calibration has been calibrated/checked by corresponding calibrated equipment in the laboratory.

Maximum Tolerance and calibration frequency stated in the report, unless otherwise stated, the internal acceptance criteria of Pilot Testing Limited will be followed.

Turbidity	
Turbidimeter	
Xin Rui	
WGZ-3B	
1309192	
25/10/2018	
	Turbidimeter Xin Rui WGZ-3B 1309192

Remarks:

This is the Final Report. Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

Approved Signatory:

Ms. Wong Po Yan, Pauline Assistant Laboratory Manager Issue Date:

25/10/2018

This report may not be reproduced except with prior written approval from Pilot Testing Limited.

WORK ORDER: HK1811070 DATE OF ISSUE: 25/10/2018

CLIENT: LAM GEOTECHNICS LIMITED

Equipment Type:	Turbidimeter	
Brand Name:	Xin Rui	
Model No.:	WGZ-3B	
Serial No.:	1309192	
Equipment No.:		
Date of Calibration:	25/10/2018	
Date of next Calibation:	25/01/2019	

Parameters:

Turbidity

Method Ref: APHA 22nd ed. 2130B

Expected Reading (NTU)	Display Reading (NTU)	Tolerance	
0	0.00		
4	3.95	-1.3%	
10	10.58	5.8%	
40	39.06	-2.3%	
100	100.50	0.5%	
400	397	-0.7%	
1000	997	-0.3%	
2-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	Tolerance Limit (±)	10%	

Remark: "Displayed Reading" presents the figures shown on item under calibration/checking regardless of equipment precision or significant figures.

This report may not be reproduced except with prior written approval from Pilot Testing Limited.

Information supplied	by customer:		
CONTACT:	MR. CHAN KA CHUN	JOB REFERENCE NO.:	22787053-B23V2603
CLIENT:	LAM GEOTECHNICS LIMITED		22/8/055-D23V2605
DATE RECEIVED:			
DATE OF ISSUE:	31/01/2019		
ADDRESS:	11/F, CENTRE POINT, 181-185, GI	OUCESTER ROAD	
	WANCHAI, HONG KONG	coolor Lin NOAD,	
PROJECT:			

METHOD OF PERFORMANCE CHECK/ CALIBRATION: Ref: APHA22nd ed 2130B

COMMENTS

It is certified that the item under performance check/calibration has been calibrated/checked by corresponding calibrated equipment in the laboratory.

Maximum Tolerance and calibration frequency stated in the report, unless otherwise stated, the internal acceptance criteria of FT Laboratories Ltd will be followed.

Scope of Test:	Turbidity	
Equipment Type:	Turbidimeter	
Brand Name:	Xin Rui	
Model No.:	WGZ-3B	
Serial No.:	1309192	
Equipment No.:		
Date of Calibration:	31/01/2019	
Remarks	0110114017	

Remarks:

This is the Final Report. Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

Certified By:

HO Lai Sze Senior Chemist

Issue Date: 31/01/2019

This report may not be reproduced except with prior written approval from FT Laboratories Ltd. Form No.: HG022-002 Rev 0 20190101

Page 1 of 2

WORK ORDER:	22787053-B23V2603
DATE OF ISSUE:	31/01/2019
CLIENT:	LAM GEOTECHNICS LIMITED

Equipment Type:	Turbidimeter	
Brand Name:	Xin Rui	
Model No.:	WGZ-3B	
Serial No.:	1309192	
Equipment No.:		
Date of Calibration:	31/01/2019	
Date of next Calibation:	30/04/2019	
Lab ID:	H190048-03	

Parameters:

Turbidity

Method Ref: APHA 22nd ed. 2130B

Ex ected Reading (NTU)	Display Reading (NTU)	Tolerance	
0	0.00		
4	3.96	-1.0%	
10	9.30	-7.0%	
40	39.50	-1.3%	
100	100.00	0.0%	
400	400	0.0%	
1000	903	-9.7%	
	Tolerance Limit (±)	10%	

Remark: "Displayed Reading" presents the figures shown on item under calibration/checking regardless of equipment precision or significant figures.

1/2 Page

REPORT OF EQUIPMENT PERFORMANCE CHECK / CALIBRATION

Information supplied	by customer:		
CONTACT:	MR. SAM LAM	WORK ORDER:	HK1811147
CLIENT:	LAM GEOTECHNICS LIMITED		
DATE RECEIVED:	16/11/2018		
DATE OF ISSUE:	19/11/2018		
ADDRESS:	11/F, CENTRE POINT, 181-185, G	LOUCESTER ROAL	D,
	WANCHAI, HONG KONG		
PROJECT:	and the second		

METHOD OF PERFORMANCE CHECK/ CALIBRATION: Ref: APHA22nd ed 2130B

COMMENTS

It is certified that the item under performance check/calibration has been calibrated/checked by corresponding calibrated equipment in the laboratory.

Maximum Tolerance and calibration frequency stated in the report, unless otherwise stated, the internal acceptance criteria of Pilot Testing Limited will be followed.

Scope of Test:	Turbidity	
Equipment Type:	Turbidimeter	
Brand Name:	Xin Rui	
Model No.:	WGZ-3B	
Serial No.:	1403009	
Equipment No.:	200	
Date of Calibration:	19/11/2018	

Remarks:

This is the Final Report. Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

Approved Signatory:

Ms. Wong Po Yan, Pauline Assistant Laboratory Manager

Issue Date:

19/11/2018

This report may not be reproduced except with prior written approval from Pilot Testing Limited.

Address: No.B12, 5th Floor, Block B, Tonic Industrial Centre, No.19 Lam Hing Street, Kowloon Bay, Kowloon Phone +852 2527 6691 | Email info@pilot-testing.com

PILOT

REPORT OF EQUIPMENT PERFORMANCE CHECK / CALIBRATION

WORK ORDER:	HK1811147
DATE OF ISSUE:	19/11/2018
CLIENT:	LAM GEOTECHNICS LIMITED

Equipment Type:	Turbidimeter	
Brand Name:	Xin Rui	
Model No.:	WGZ-3B	
Serial No.:	1403009	
Equipment No.:	444	
Date of Calibration:	19/11/2018	
Date of next Calibation:	19/02/2019	

Parameters:

Turbidity

Method Ref: APHA 22nd ed. 2130B

Expected Reading (NTU)	Display Reading (NTU)	Tolerance	
0	0.00		
4	3.98	-0.5%	
10	10.12	1.2%	
40	43.50	8.8%	
100	103.00	3.0%	
400	396	-1.0%	
1000	925	-7.5%	
	Tolerance Limit (±)	10%	

Remark: "Displayed Reading" presents the figures shown on item under calibration/checking regardless of equipment precision or significant figures.

This report may not be reproduced except with prior written approval from Pilot Testing Limited.

Information supplied	by customer:		
CONTACT:	MR. CHAN KA CHUN	JOB REFERENCE NO.:	
CLIENT:	LAM GEOTECHNICS LIMITED	JOB REFERENCE NU.:	22787053-B23V2601
DATE RECEIVED:	31/01/2019		
DATE OF ISSUE:	31/01/2019		
ADDRESS:	11/F, CENTRE POINT, 181-185, GI	OUCESTED DOAD	
	WANCHAI, HONG KONG	LOUCESTER ROAD,	
PROJECT:			

METHOD OF PERFORMANCE CHECK/ CALIBRATION: Ref: APHA22nd ed 2130B

COMMENTS

It is certified that the item under performance check/calibration has been calibrated/checked by corresponding calibrated equipment in the laboratory.

Maximum Tolerance and calibration frequency stated in the report, unless otherwise stated, the internal acceptance criteria of FT Laboratories Ltd will be followed.

Scope of Test:	Turbidity	
Equipment Type:	Turbidimeter	
Brand Name:	Xin Rui	
Model No.:	WGZ-3B	
Serial No.:	1807077	
Equipment No.:	100/0/7	
Date of Calibration:	31/01/2019	
Remarks:	51/01/2017	

Remarks:

This is the Final Report. Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

Certified By:

HO Lai Sze Senior Chemist Issue Date: 31/01/2019

This report may not be reproduced except with prior written approval from FT Laboratories Ltd. Form No.: HG022-002 Rev 0 20190101

Page 1 of 2

WORK ORDER:	22787053-B23V2601
DATE OF ISSUE:	31/01/2019
CLIENT:	LAM GEOTECHNICS LIMITED

Turbidimeter	
31/01/2019	
	Turbidimeter Xin Rui WGZ-3B 1807077 31/01/2019 30/04/2019 H190048-01

Parameters:

Turbidity

Method Ref: APHA 22nd ed. 2130B

Expected Reading (NTU)	Display Reading (NTU)	Tolerance	
0	0.00		_
4	3.88	-3.0%	
10	9.44	-5.6%	
40	41.24	3.1%	
100	100.00	0.0%	
400	400	0.0%	
1000	996	-0.4%	
	Tolerance Limit (±)	10%	

Remark: "Displayed Reading" presents the figures shown on item under calibration/checking regardless of equipment precision or significant figures.

Information supplied	l by customer:		
CONTACT:	MR. CHAN KA CHUN	JOB REFERENCE NO.:	11707052 D12104404
CLIENT:	LAM GEOTECHNICS LIMITED	COD REFERENCE NO	22787053-B23V2602
DATE RECEIVED:			
DATE OF ISSUE:	31/01/2019		
ADDRESS:	11/F, CENTRE POINT, 181-185, GI	LOUCESTER ROAD	
	WANCHAI, HONG KONG	Lo coloren ROAD,	
PROJECT:			

METHOD OF PERFORMANCE CHECK/ CALIBRATION: Ref: APHA22nd ed 2130B

COMMENTS

It is certified that the item under performance check/calibration has been calibrated/checked by corresponding calibrated equipment in the laboratory.

Maximum Tolerance and calibration frequency stated in the report, unless otherwise stated, the internal acceptance criteria of FT Laboratories Ltd will be followed.

Scope of Test:	Turbidity	
E uipment Type:	Turbidimeter	
Brand Name:	Xin Rui	
Model No.:	WGZ-3B	
Serial No.:	1807079	
Equipment No.:		
Date of Calibration:	31/01/2019	
Remarks	01/01/2019	

Remarks:

This is the Final Report. Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

Certified By:

HO Lai ze

Senior Chemist

Issue Date: 31/01/2019

This report may not be reproduced except with prior written approval from FT Laboratories Ltd. Form No.: HG022-002 Rev 0 20190101

Page 1 of 2

WORK ORDER:	22787053-B23V2602
DATE OF ISSUE:	31/01/2019
CLIENT:	LAM GEOTECHNICS LIMITED

Equipment Type:	Turbidimeter	
Brand Name:	Xin Rui	
Model No.:	WGZ-3B	
Serial No.:	1807079	
Equipment No.:		
Date of Calibration:	31/01/2019	
Date of next Calibation:	30/04/2019	
Lab ID:	H190048-02	

Parameters:

Turbidity

Method Ref: APHA 22nd ed. 2130B

Expected Reading (NTU)	Display Reading (NTU)	Tolerance	
0	0.00		
4	3.94	-1.5%	
10	10.01	0.1%	
40	39.89	-0.3%	
100	98.91	-1.1%	
400	396	-1.0%	
1000	1000	0.0%	
	Tolerance Limit (±)	10%	_

Remark: "Displayed Reading" presents the figures shown on item under calibration/checking regardless of equipment precision or significant figures.

EQUIPMENT PERFORMANCE CHECK / CALIBRATION REPORT

Report No.	: HK1811027
Project Name	EQUIPMENT PERFORMANCE CHECK/CALIBRATION REPORT
Date of Issue	: 11/10/2018
Customer	LAM ENVIRONMENTAL SERVICES LIMITED
Address	: 11/F., CENTRE POINT, 181-185 GLOUCESTER ROAD, WAN CHAI, HONG KONG
Calibration Job No.	HK1811027
Test Item No.	HK1811027-01
Test Item Details	
Test Item Description	: Sonde
Manufacturer	: YSI
Model No.	Professional Plus
Serial No.	: 14M100277
Performance Method	Checked according to in-house method CAL005
	(References: Temperature (Section 6 of Intermational Accreditation New Zealand Technical G
	No. 3 Second edition March 2008: Working Thermometer Calibration Procedure), pH value
	(APHA 21e 4500H:B), Salinity (Refer to Conductivity APHA 19e 2510B)
	, Dissolved oxygen (APHA 19e 4500-O.C))
Test Item Receipt Date	: 11/10/2018
Test Item Calibration Date	: 11/10/2018

Notes: 1. This report shall not be reproduced, except in full, without prior approval from Pilot Testing Limited.

- 2. Results relate to item(s) as received.
- 3. ± indicates the tolerance limit
- 4. N/A = Not applicable
- 5. APHA American Public Health Association, American Water Works Association and Water Environment Federation, Standard Methods for the Examination of Water and Wastewater, APHA-AWWA-WEF, USA
- 6. DO, pH, salinity and temperature performance check was conducted by Pilot Testing Limited.
- Because of high sensitivity and ease of measurement, the conductivity method (according to APHA 19e 2510) is used to determine salinity.

Approved Signatory

Issue Date:

11/10/2018

Ms. Wong Po Yan, Pauline (Assistant Laboratory Manager)

WORK ORDER: HK1811027 DATE OF ISSUE: 11/10/2018 CLIENT: LAM ENVIRONMENTAL SERVICES LIMITED

Equipment Type	Sonde	
Manufacturer	YSI	
Model No.	Professional Plus	
Serial No.	14M100277	
Date of Calibration	11-Oct-18	
Date of next Calibation	11-Jan-19	

Parameters:

Temperature (Method Ref: Section 6 of Intermational Accreditation New Zealand Technical Guide No.3 Second edition March 2008: Working Thermometer Calibration Procedure)

Reference Reading (*C)	Display Reading (°C)	Deviation (°C)
7.0	6.9	-0.1
15.7	16.0	0.4
24.7	24.5	-0.2
T	olerance Limit	±2.0

pH Value (Method Ref: APHA21e, 4500H:B)

Expected Reading (pH unit)	Reference Reading (pH unit)	Display Reading (pH unit)	Deviation (pH unit)
4.0	3.99	3.98	-0.01
7.0	7.01	7.08	0.07
10.0	10.02	10.06	0.04
	Tolerance Limit		±0.20

Conductivity (Method Ref: APHA 19e, 2510)

KCI concentration (mol/L)	Reference Reading (ms/cm)	Display Reading (ms/cm)	Deviation (%)
0.0000	0.00	0.00	
0.1000	12.6	12.6	-0.55
0.2000	23.6	23.6	-0.08
0.5000	55.1	55.7	1.09
	Tolerance Limit		±2.0

Dissolved Oxygen (DO) (Method Ref: APHA 19e, 4500-O, C)

Reference DO reading (mg/L)	DO reading od DO probe (mg/L)	Deviation (mg/L)
6.97	6.92	-0.05
5.15	5.10	-0.05
3.97	4.08	0.11
	Tolerance Limit	±0.20

Remarks:

(1) Maxium tolerance and calibration frequency stated in the report, unless otherewise stated, the internal acceptance criteria of Pilot Testing Limited will be followed.

(2) Displayed reading presents the figures shown on item under calibration/checking regardless of equipment precision or significant figures.

(3) Because of high sensitivity and ease of measurement, the conductivity method (according to APHA 19e 2510) is used to determine salinity.

- End of Report -

ALS Technichem (HK) Pty Ltd 11/F, Chung Shun Knitting Centre 1-3 Wing Yip Street, Kwai Chung N.I., Hong Kong T: +852 2610 1044 | F: +852 2610 2021

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

CONTACT: MR CHAN KA CHUN

CLIENT: LAM ENVIRONMENTAL LTD

ADDRESS: 11/F, CENTRE POINT, 181 - 185 GLOUCESTER ROAD WAN CHAI, HONG KONG WORK ORDER: HK19

HK1900006

SUB-BATCH: 0 LABORATORY: HONG KONG DATE RECEIVED: 31- Dec- 2018 DATE OF ISSUE: 10- Jan- 2019

COMMENTS

The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source.

The "Tolerance Limit" quoted is the acceptance criteria applicable for similar equipment used by the ALS Hong Kong laboratory or quoted from relevant international standards.

The "Next Calibration Date" is recommended according to best practice principle as practised by the ALS Hong Kong laboratory or guoted from relevant international standards.

 Scope of Test:
 Dissolved Oxygen, pH Value, Salinity and Temperature

 Equipment Type:
 Multifunctional Meter

 Brand Name:
 YSI

 Model No.:
 Professional Plus

 Serial No.:
 14M100277

 Equipment No.:
 -

 Date of Calibration:
 10 January, 2019

NOTES

This is the Final Report and supersedes any preliminary report with this batch number.

Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

no An

Mr Chan Siu Ming, Vico Manager - Inorganic

This report may not be reproduced except with prior written approval from ALS Technichem (HK) Pty Ltd.

WORK	ORDER:	HK1900006

SUB-BATCH:	0
DATE OF ISSUE:	10- Jan- 2019
CLIENT:	LAM ENVIRONMENTAL LTD
Equipment Type:	Multifunctional Meter
Brand Name:	YSI
Model No.:	Professional Plus
Carlal Ma .	144100277

Serial No .: Equipment No.: Date of Calibration:

14M100277 10 January, 2019

Date of Next Calibration: 10 April, 2019

PARAMETERS: **Dissolved** Oxygen

Method Ref: APHA (21st edition), 4500-O: G

Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)
2.67	2.47	- 0.20
6.20	6.28	+0.08
8.88	8.83	- 0.05
	Tolerance Limit (mg/L)	±0.20

pH Value

Method Ref: APHA (21st edition), 4500H:B

Expected Reading (pH unit)	Displayed Reading (pH unit)	Tolerance (pH unit)
4.0	3.97	- 0.03
7.0	6.84	- 0.16
10.0	10.03	+ 0.03
12 (25)34.)	Tolerance Limit (pH unit)	±0.20

Salinity

Method Ref: APHA (21st edition), 2520B

Expected Reading (ppt)	Displayed Reading (ppt)	Tolerance (%)
0	0.00	
10	10.36	+3.6
20	18.90	- 5.5
30	27.77	- 7.4
	Tolerance Limit (%)	±10.0

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Cha Ain

Mr Chan Siu Ming, Vico Manager - Inorganic

WORK ORDER:	HK1900006			ALS
SUB-BATCH:	0			(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
DATE OF ISSUE:	10- Jan- 2019			
CLIENT:	LAM ENVIRONMENTAL LTD			
Equipment Type:	Multifunctional Meter			
Brand Name:	YSI			
Model No.:	Professional Plus			
Serial No.:	14M100277			
Equipment No.:	terrer i terrer			
Date of Calibration:	10 January, 2019	Date of Next Calibration:	10 April, 2019	

PARAMETERS: Temperature

Method Ref: Section 6 of International Accreditation New Zealand Technical Guide No. 3 Second edition March 2008: Working Thermometer Calibration Procedure

Expected Reading (°C)	Displayed Reading (°C)	Tolerance (°C)
10.5	11.3	+ 0.8
21.0	19.8	- 1.2
40.5	39.4	- 1.1
	Tolerance Limit (°C)	±2.0

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Ma Ain

A

Mr Chan Siu Ming, Vico Manager - Inorganic

EQUIPMENT PERFORMANCE CHECK / CALIBRATION REPORT

Report No.	: HK1811019
Project Name Date of Issue	EQUIPMENT PERFORMANCE CHECK/CALIBRATION REPORT 11/10/2018
Customer	LAM ENVIRONMENTAL SERVICES LIMITED
Address	: 11/F., CENTRE POINT, 181-185 GLOUCESTER ROAD, WAN CHAI, HONG KONG
Calibration Job No.	: HK1811019
Test Item No.	: HK1811019-01
Test Item Details	
Test Item Description	Sonde
Manufacturer	YSI
Model No.	: Professional Plus
Serial No.	14K100322
Performance Method	: Checked according to in-house method CAL005
	(References: Temperature (Section 6 of International Accreditation New Zealand Technical G
	No. 3 Second edition March 2008: Working Thermometer Calibration Procedure), pH value
	(APHA 21e 4500H:B), Salinity (Refer to Conductivity APHA 19e 2510B)
	, Dissolved oxygen (APHA 19e 4500-O,C))
Test Item Receipt Date	9/10/2018
Test Item Calibration Date	: 10/10/2018

Notes : 1. This report shall not be reproduced, except in full, without prior approval from Pilot Testing Limited.

- 2. Results relate to item(s) as received.
- 3. ± indicates the tolerance limit
- 4. N/A = Not applicable
- 5. APHA American Public Health Association, American Water Works Association and Water Environment Federation, Standard Methods for the Examination of Water and Wastewater, APHA-AWWA-WEF, USA
- 6. DO, pH, salinity and temperature performance check was conducted by Pilot Testing Limited.
- 7. Because of high sensitivity and ease of measurement, the conductivity method (according to APHA 19e 2510) is used to determine salinity.

Approved Signatory

Ms. Wong Po Yan, Pauline (Assistant Laboratory Manager) Issue Date:

11/10/2018

WORK ORDER: HK1811019 DATE OF ISSUE: 11/10/2018 CLIENT: LAM ENVIRONMENTAL SERVICES LIMITED

Equipment Type	Sonde	
Manufacturer	YSI	<u>.</u>
Model No.	Professional Plus	
Serial No.	14K100322	
Date of Calibration	10-Oct-18	
Date of next Calibation	10-Jan-19	1.

Parameters:

Temperature (Method Ref: Section 6 of International Accreditation New Zealand Technical Guide No.3 Second edition March 2008: Working Thermometer Calibration Procedure)

Reference Reading (*C)	Display Reading (°C)	Deviation (°C)
8.8	8.8	0.0
15.3	15.2	-0.1
25.4	25.3	-0.1
	Tolerance Limit	±2.0

pH Value (Method Ref: APHA21e, 4500H:B)

Expected Reading (pH unit)	Reference Reading (pH unit)	Display Reading (pH unit)	Deviation (pH unit)
4.0	4.01	3.98	-0.03
7.0	6.99	7.02	0.03
10.0	10.02	10.03	0.01
	Tolerance Limit		±0.20

Conductivity (Method Ref: APHA 19e, 2510)

KCI concentration (mol/L)	Reference Reading (ms/cm)	Display Reading (ms/cm)	Deviation (%)
0.0000	0.00	0.00	
0.1000	12.3	12.3	-0.16
0.2000	24.0	23.9	-0.33
0.5000	57.1	57.2	0.18
	Tolerance Limit		±2.0

Dissolved Oxygen (DO) (Method Ref: APHA 19e, 4500-O, C)

Reference DO reading (mg/L)	DO reading od DO probe (mg/L)	Deviation (mg/L)
7.00	7.01	0.01
6.41	6.43	0.02
4.46	4.41	-0.05
	Tolerance Limit	±0.20

Remarks:

(1) Maxium tolerance and calibration frequency stated in the report, unless otherewise stated, the internal acceptance criteria of Pilot Testing Limited will be followed.

(2) Displayed reading presents the figures shown on item under calibration/checking regardless of equipment precision or significant figures.

(3) Because of high sensitivity and ease of measurement, the conductivity method (according to APHA 19e 2510) is used to determine salinity.

- End of Report -

ALS Technichem (HK) Pty Ltd 11/F, Chung Shun Knitting Centre 1-3 Wing Yip Street, Kwai Chung N.T., Hong Kong T: +852 2610 1044 | F: +852 2610 2021

REPORT OF EQUIPMENT PERFORMANCE CHECK/ CALIBRATION

CONTACT: CLIENT:	MR CHAN KA CHUN	WORK ORDER:	HK1901813
	LAM ENVIRONMENTAL LTD		
ADDRESS:	11/ F, CENTRE POINT,	SUB-BATCH:	0
	181 - 185 GLOUCESTER ROAD	LABORATORY:	HONG KONG
	WAN CHAI	DATE RECEIVED:	10-Jan-2019
		DATE OF ISSUE:	11- Feb- 2019

COMMENTS

The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source.

The "Tolerance Limit" quoted is the acceptance criteria applicable for similar equipment used by the ALS Hong Kong laboratory or quoted from relevant international standards.

The "Next Calibration Date" is recommended according to best practice principle as practised by the ALS Hong Kong laboratory or quoted from relevant international standards.

Scope of Test:	Dissolved Oxygen, Salinity and Temperature
Equipment Type:	Multifunctional Meter
Brand Name:	YSI
Model No.:	Professional Plus
Serial No .:	14K100322
Equipment No.:	
Date of Calibration:	18 January, 2019

NOTES

This is the Final Report and supersedes any preliminary report with this batch number.

Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

Cha Si

Mr Chan Siu Ming, Vico Manager - Inorganic

This report may not be reproduced except with prior written approval from ALS Technichem (HK) Pty Ltd.

ALS

WORK ORDER: HK1901813

SUB-BATCH:	0
DATE OF ISSUE:	11- Feb- 2019
CLIENT:	LAM ENVIRONMENTAL LTD
Equipment Type:	Multifunctional Meter
Brand Name:	YSI

Brand Name:YSIModel No.:Professional PlusSerial No.:14K100322Equipment No.:--Date of Calibration:18 January, 2019

Date of Next Calibration:

18 April, 2019

PARAMETERS:

Dissolved Oxygen Method Ref: APHA (21st edition), 4500- O: G

Expected Reading (mg/ L)	Displayed Reading (mg/ L)	Tolerance (mg/ L)
2.47	2.37	- 0.10
5.50	5.43	- 0.07
8.81	8.94	+0.13
	Tolerance Limit (mg/L)	±0.20

Salinity

Method Ref: APHA (21st edition), 2520B

Expected Reading (ppt)	Displayed Reading (ppt)	Tolerance (%)
0	0.00	
10	10.73	+7.3
20	19.43	- 2.9
30	30.69	+2.3
	Tolerance Limit (%)	±10.0

Temperature

Method Ref: Section 6 of International Accreditation New Zealand Technical

Guide No. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

Expected Reading (°C)	Displayed Reading (°C)	Tolerance (°C)
10.0	9.0	- 1.0
22.0	21.6	- 0.4
41.5	42.2	+ 0.7
	Tolerance Limit (°C)	±2.0

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Cha Alig

Mr Chan Siu Ming, Vico Manager - Inorganic

ALS Technichem (HK) Pty Ltd 11/F, Chung Shun Knitting Centre 1-3 Wing Yip Street, Kwai Chung N.T., Hong Kong T: +852 2610 1044 | F: +852 2610 2021

REPORT OF EQUIPMENT PERFORMANCE CHECK/ CALIBRATION

CONTACT:	MR CHAN KA CHUN	WORK ORDER:	HK1903901
CLIENT:	LAM ENVIRONMENTAL LTD		
ADDRESS:	11/F, CENTRE POINT,	SUB-BATCH:	0
	181 - 185 GLOUCESTER ROAD	LABORATORY:	HONG KONG
	WAN CHAI	DATE RECEIVED:	25-Jan-2019
		DATE OF ISSUE:	30-Jan-2019

COMMENTS

The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source.

The "Tolerance Limit" quoted is the acceptance criteria applicable for similar equipment used by the ALS Hong Kong laboratory or quoted from relevant international standards.

The "Next Calibration Date" is recommended according to best practice principle as practised by the ALS Hong Kong laboratory or quoted from relevant international standards.

Scope of Test:	pH Value and Temperature
Equipment Type:	Multifunctional Meter
Brand Name:	YSI
Model No.:	Professional Plus
Serial No.:	14K100322
Equipment No.:	
Date of Calibration:	30 January, 2019

<u>NOTES</u>

This is the Final Report and supersedes any preliminary report with this batch number.

Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

Ms. Lin Wai Yu Assistant Manager - Inorganic

This report may not be reproduced except with prior written approval from ALS Technichem (HK) Pty Ltd.

ALS

WORK ORDER: HK1903901

SUB- BATCH:0DATE OF ISSUE:30-Jan-2019CLIENT:LAM ENVIRONMENTAL LTD

Equipment Type:Multifunctional MeterBrand Name:YSIModel No.:Professional PlusSerial No.:14K100322Equipment No.:--Date of Calibration:30 January, 2019

Date of Next Calibration:

30 April, 2019

PARAMETERS:

pH Value

Method Ref: APHA (21st edition), 4500H:B

Expected Reading (pH unit)	Displayed Reading (pH unit)	Tolerance (pH unit)
4.0	4.14	+0.14
7.0	6.99	-0.01
10.0	9.80	-0.20
	Tolerance Limit (pH unit)	±0.20

Temperature

Method Ref: Section 6 of International Accreditation New Zealand Technical Guide No. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

Expected Reading (°C)	Displayed Reading (°C)	Tolerance (°C)
10.0	9.0	-1.0
22.0	21.6	-0.4
41.5	42.2	+0.7
	Tolerance Limit (°C)	±2.0

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Ms. Lin Wai Yu Assistant Manager - Inorganic

EQUIPMENT PERFORMANCE CHECK / CALIBRATION REPORT

Report No. Project Name Date of Issue	HK1811013 EQUIPMENT PERFORMANCE CHECK/CALIBRATION REPORT 10/10/2018
Customer	LAM ENVIRONMENTAL SERVICES LIMITED
Address	11/F., CENTRE POINT, 181-185 GLOUCESTER ROAD, WAN CHAI, HONG KONG
Calibration Job No.	HK1811013
Test Item No.	HK1811013-01
Test Item Details	
Test Item Description	Sonde
Manufacturer	YSI
Model No.	Professional Plus
Serial No.	17F100236
Performance Method	Checked according to in-house method CAL005
	(References: Temperature (Section 6 of International Accreditation New Zealand Technical G
	No. 3 Second edition March 2008: Working Thermometer Calibration Procedure), pH value
	(APHA 21e 4500H:B), Salinity (Refer to Conductivity APHA 19e 2510B.)
	Dissolved oxygen (APHA 19e 4500-O.C))
Test Item Receipt Date	8/10/2018
Test Item Calibration Date	9/10/2018

Notes : 1. This report shall not be reproduced, except in full, without prior approval from Pilot Testing Limited.

- 2. Results relate to item(s) as received.
- 3. ± indicates the tolerance limit
- 4. N/A = Not applicable
- 5. APHA American Public Health Association, American Water Works Association and Water Environment Federation, Standard Methods for the Examination of Water and Wastewater, APHA-AWWA-WEF, USA
- DO, pH, salinity and temperature performance check was conducted by Pilot Testing Limited.
 Because of high sensitivity and ease of measurement, the conductivity method (according to APHA 19e 2510) is used to determine salinity.

Approved Signatory

Ms. Wong Po Yan, Pauline

(Assistant Laboratory Manager)

Issue Date:

10/10/2018

WORK ORDER: HK1811013 DATE OF ISSUE: 10/10/2018 CLIENT: LAM ENVIRONMENTAL SERVICES LIMITED

Equipment Type	Sonde	
Manufacturer	YSI	
Model No.	Professional Plus	
Serial No.	17F100236	
Date of Calibration	09-Oct-18	
Date of next Calibation	09-Jan-19	

Parameters:

Temperature (Method Ref: Section 6 of Intermational Accreditation New Zealand Technical Guide No.3 Second edition March 2008: Working Thermometer Calibration Procedure)

Reference Reading ("C)	Display Reading (°C)	Deviation (°C)
6.3	6.3	0.0
14.6	14.4	-0.2
25.6	25.5	-0.1
Т	olerance Limit	±2.0

pH Value (Method Ref: APHA21e, 4500H:B)

Expected Reading (pH unit)	Reference Reading (pH unit)	Display Reading (pH unit)	Deviation (pH unit)
4.0	3.99	4.01	0.02
7.0	6.97	7.01	0.04
10.0	10.03	10.04	0.01
	Tolerance Limit		±0.20

Conductivity (Method Ref: APHA 19e, 2510)

KCI concentration (mol/L)	Reference Reading (ms/cm)	Display Reading (ms/cm)	Deviation (%)
0.0000	0.00	0.00	
0.1000	12.2	12.1	-0.33
0.2000	24.0	23.9	-0.58
0.5000	57.1	56.9	-0.32
	Tolerance Limit		±2.0

Dissolved Oxygen (DO) (Method Ref: APHA 19e, 4500-O, C)

Reference DO reading (mg/L)	DO reading od DO probe (mg/L)	Deviation (mg/L)
7.14	7.18	0.04
6.79	6.81	0.02
4.80	4.93	0.13
	Tolerance Limit	±0.20

Remarks:

(1) Maxium tolerance and calibration frequency stated in the report, unless otherewise stated, the internal acceptance criteria of Pilot Testing Limited will be followed.

(2) Displayed reading presents the figures shown on item under calibration/checking regardless of equipment precision or significant figures.

(3) Because of high sensitivity and ease of measurement, the conductivity method (according to APHA 19e 2510) is used to determine salinity.

- End of Report -

ALS Technichem (HK) Pty Ltd 11/F, Chung Shun Knitting Centre 1-3 Wing Yip Street, Kwai Chung N.T., Hong Kong T: +852 2610 1044 | F: +852 2610 2021

REPORT OF EQUIPMENT PERFORMANCE CHECK/ CALIBRATION

CONTACT:	MR CHAN KA CHUN	WORK ORDER:	HK1901812
CLIENT:	LAM ENVIRONMENTAL LTD		
ADDRESS:	11/F, CENTRE POINT,	SUB-BATCH:	0
	181 - 185 GLOUCESTER ROAD	LABORATORY:	HONG KONG
	WAN CHAI	DATE RECEIVED:	10-Jan-2019
		DATE OF ISSUE:	18-Jan-2019

<u>COMMENTS</u>

The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source.

The "Tolerance Limit" quoted is the acceptance criteria applicable for similar equipment used by the ALS Hong Kong laboratory or quoted from relevant international standards.

The "Next Calibration Date" is recommended according to best practice principle as practised by the ALS Hong Kong laboratory or quoted from relevant international standards.

Scope of Test:	Dissolved Oxygen, pH Value, Salinity and Temperature
Equipment Type:	Multifunctional Meter
Brand Name:	YSI
Model No.:	Professional Plus
Serial No .:	17F100236
Equipment No.:	
Date of Calibration:	18 January, 2019

<u>NOTES</u>

This is the Final Report and supersedes any preliminary report with this batch number.

Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

Ma Si

Mr Chan Siu Ming, Vico Manager - Inorganic

This report may not be reproduced except with prior written approval from ALS Technichem (HK) Pty Ltd.

ALS

WORK ORDER: HK1901812

SUB-BATCH:	0
DATE OF ISSUE:	18-Jan-2019
CLIENT:	LAM ENVIRONMENTAL LTD
Equipment Type:	Multifunctional Meter

Equipment Type:	Multifunctional Meter	
Brand Name:	YSI	
Model No.:	Professional Plus	
Serial No.:	17F100236	
Equipment No.:		
Date of Calibration:	18 January, 2019	Da

Date of Next Calibration:

18 April, 2019

PARAMETERS:

Dissolved Oxygen Method Ref: APHA (21st edition), 4500- O: G

Expected Reading (mg/ L)	Displayed Reading (mg/ L)	Tolerance (mg/ L)
2.65	2.45	- 0.20
6.02	5.92	- 0.10
8.88	8.94	+ 0.06
	Tolerance Limit (mg/L)	±0.20

pH Value

Method Ref: APHA (21st edition), 4500H:B

Expected Reading (pH unit) Displayed Reading (pH unit) Tolerance (pH unit)		
Expected Reading (pri unit)	Displayed Reading (pri unit)	Tolerance (pri unit)
4.0	4.03	+0.03
7.0	7.08	+ 0.08
10.0	10.16	+0.16
	Tolerance Limit (pH unit)	±0.20

Salinity

Method Ref: APHA (21st edition), 2520B

Expected Reading (ppt)	Displayed Reading (ppt)	Tolerance (%)
0	0.00	
10	10.20	+ 2.0
20	19.68	- 1.6
30	29.74	- 0.9
	Tolerance Limit (%)	±10.0

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Ma Ain

Mr Chan Siu Ming, Vico Manager - Inorganic

WORK ORDER:	HK1901812			S
SUB-BATCH: DATE OF ISSUE: CLIENT:	0 18-Jan-2019 LAM ENVIRONMENTAL LTD			
Equipment Type: Brand Name: Model No.: Serial No.: Equipment No.: Date of Calibration:	Multifunctional Meter YSI Professional Plus 17F100236 18 January, 2019	Date of Next Calibration:	18 April, 2019	

PARAMETERS: Temperature

Method Ref: Section 6 of International Accreditation New Zealand Technical Guide No. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

Expected Reading (°C)	Displayed Reading (°C)	Tolerance (°C)
10.0	9.5	- 0.5
22.0	21.3	- 0.7
41.5	42.3	+ 0.8
	Tolerance Limit (°C)	±2.0

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Cha Aiz

Mr Chan Siu Ming, Vico Manager - Inorganic